Search results for "Botrytis cinerea."

showing 10 items of 54 documents

The Histone Marks Signature in Exonic and Intronic Regions Is Relevant in Early Response of Tomato Genes to Botrytis cinerea and in miRNA Regulation

2020

Research into the relationship between epigenetic regulation and resistance to biotic stresses provides alternatives for plant protection and crop improvement. To unravel the mechanisms underlying tomato responses to Botrytis cinerea, we performed a chromatin immunoprecipitation (ChIP) analysis showing the increase in H3K9ac mark along the early induced genes SlyDES, SlyDOX1, and SlyLoxD encoding oxylipin-pathway enzymes, and SlyWRKY75 coding for a transcriptional regulator of hormonal signaling. This histone mark showed a more distinct distribution than the previously studied H3K4me3. The RNAPol-ChIP analysis reflected the actual gene transcription associated with increased histone modific…

0106 biological sciences0301 basic medicinePseudomonas syringaeMiRNA bindingPlant ScienceBiology<i>pseudomonas syringae</i>01 natural sciencesTomato03 medical and health sciencesBotrytis cinerealcsh:BotanyTomàquetsTranscriptional regulationEpigeneticsGeneEcology Evolution Behavior and SystematicsBotrytis cinereamiRNAGeneticsEcologyHistone modificationsfungifood and beveragesFongs patògensbiology.organism_classificationChromatin immunoprecipitationlcsh:QK1-989030104 developmental biologyHistone<i>botrytis cinerea</i>biology.proteinRNAH3K4me3EpigeneticsChromatin immunoprecipitation010606 plant biology & botany
researchProduct

Composition, Antifungal, Phytotoxic, and Insecticidal Activities of Thymus kotschyanus Essential Oil

2020

Essential oils (EOs) are some of the outstanding compounds found in Thymus that can exert antifungal, phytotoxic, and insecticidal activities, which encourage their exploration and potential use for agricultural and food purposes. The essential oils (EO) obtained from Thymus kotschyanus collected in the East Azerbaijan Province (Iran) were characterized using a gas chromatography-mass spectrometry (GC-MS) analysis. Thymol was the most important compound (60.48%), although 35 other active compounds were identified in the EO. Significant amounts of carvacrol (3.08%), p-cymene (5.56%), and &gamma

0106 biological sciencesInsecticidesAntifungal AgentsPharmaceutical ScienceOryzaephilus surinamensisCyclohexane Monoterpenespost-harvest management01 natural sciencesArticleGas Chromatography-Mass SpectrometryAnalytical Chemistrylaw.inventionThymus Plantlcsh:QD241-441chemistry.chemical_compound0404 agricultural biotechnologylcsh:Organic chemistrylawthymol010608 biotechnologyDrug DiscoveryOils VolatileAnimalsPlant OilsCarvacrolPhysical and Theoretical Chemistryγ-terpeneThymolEssential oilBotrytis cinereabiologySitophilusOrganic Chemistrymonoterpenesfood and beverages04 agricultural and veterinary sciencesbiology.organism_classification040401 food scienceFungicideHorticulturechemistryChemistry (miscellaneous)Molecular Medicinecrop pestsPenicillium expansumMolecules
researchProduct

Integrated signaling network involving calcium, nitric oxide, active oxygen species but not mitogen-activated protein kinases in BcPG1-elicited grape…

2006

We have already reported the identification of the endopolygalacturonase 1 (BcPG1) from Botrytis cinerea as a potent elicitor of defense responses in grapevine, independently of its enzymatic activity. The aim of the present study is the analysis of the signaling pathways triggered by BcPG1 in grapevine cells. Our data indicate that BcPG1 induces a Ca2+ entry from the apoplasm, which triggers a phosphorylation-dependent nitric oxide (NO) production via an enzyme probably related to a NO synthase. Then NO is involved in i) cytosolic calcium homeostasis, by activating Ca2+ release from internal stores and regulating Ca2+ fluxes across the plasma membrane, ii) plasma membrane potential variat…

0106 biological sciencesMAPK/ERK pathwayTime FactorsPhysiology[SDV]Life Sciences [q-bio]Phenylalanine ammonia-lyase01 natural sciencesNitric oxideFungal Proteins03 medical and health scienceschemistry.chemical_compounddepolarizationGene Expression Regulation Plantplant defensenitric oxideVitisdépolarisationProtein kinase ACells Cultured030304 developmental biology0303 health scienceselicitorbiologyelicitor; grapevine; plant defense; nitric oxideKinaseGeneral MedicinePlants Genetically ModifiedElicitorgrapevinechemistryBiochemistryMitogen-activated protein kinasebiology.proteinCalciumBotrytisMitogen-Activated Protein KinasesSignal transductionbotrytis cinereavigneReactive Oxygen SpeciesAgronomy and Crop ScienceSignal Transduction010606 plant biology & botany
researchProduct

Bacterial rhamnolipids are novel MAMPs conferring resistance to Botrytis cinerea in grapevine

2009

International audience; Rhamnolipids produced by the bacteria Pseudomonas aeruginosa are known as very efficient biosurfactant molecules. They are used for a wide range of industrial applications, especially in food, cosmetics and pharmaceutical formulations as well as in bioremediation of pollutants. In this paper, the role of rhamnolipids as novel molecules triggering defence responses and protection against the fungus Botrytis cinerea in grapevine is presented. The effect of rhamnolipids was assessed in grapevine using cell suspension cultures and vitro-plantlets. Ca2+ influx, mitogen-activated protein kinase activation and reactive oxygen species production form part of early signalling…

0106 biological sciencesPOTENTIATIONPhysiologyPlant ScienceFungusmedicine.disease_cause01 natural sciencesPSEUDOMONAS AERUGINOSAMicrobiologySurface-Active Agents03 medical and health sciencesBioremediationBOTRYTIS CINEREA[CHIM.ANAL]Chemical Sciences/Analytical chemistrySpore germinationmedicineGRAPEVINEVitis[SDV.BBM.BC]Life Sciences [q-bio]/Biochemistry Molecular Biology/Biochemistry [q-bio.BM]Cells CulturedComputingMilieux_MISCELLANEOUS030304 developmental biologyBotrytis cinerea[SDV.EE]Life Sciences [q-bio]/Ecology environment0303 health sciencesbiologyPseudomonas aeruginosa[CHIM.ORGA]Chemical Sciences/Organic chemistryfungiPLANT DEFENCE[SDV.BBM.BM]Life Sciences [q-bio]/Biochemistry Molecular Biology/Molecular biologyRHAMNOLIPIDESpores Fungalbiology.organism_classification[SDV.BBM.BC]Life Sciences [q-bio]/Biochemistry Molecular Biology/Biomolecules [q-bio.BM][SDV.BV.PEP]Life Sciences [q-bio]/Vegetal Biology/Phytopathology and phytopharmacyRNA PlantCalciumBotrytisMAMPsGlycolipidsMitogen-Activated Protein KinasesReactive Oxygen SpeciesBacteria010606 plant biology & botany
researchProduct

Anti-phytopathogen terpenoid glycosides from the root bark of Chytranthus macrobotrys and Radlkofera calodendron

2020

Abstract Chytranthus macrobotrys and Radlkofera calodendron are two Sapindaceae characterized by a lack of phytochemical data. Both root barks from the two Sapindaceae species were processed by ethanol extraction followed by the isolation of their primary constituents by liquid chromatography. This process yielded four previously undescribed terpenoid glycosides together with eight known analogues. Extracts and isolated compounds from C. macrobotrys and R. calodendron were then screened for antimicrobial activity against fifteen phytopathogens. The biological screening also involved extracts and pure compounds from Blighia unijugata and Blighia welwitschii, two Sapindaceae previously studie…

0106 biological sciencesPyriculariaFomitiporia mediterraneaPlant SciencePhaeomoniella chlamydosporaHorticultureSapindaceaeXylella01 natural sciencesBiochemistryRhizoctoniaRhizoctonia solaniSapindaceaeAscomycotaFusariumFusarium oxysporumBotanyGlycosidesPythiumMolecular BiologyBotrytis cinereabiologyPlant ExtractsTerpenes010405 organic chemistrybiology.plant_disease_causeBasidiomycotaGeneral MedicineSaponinsbiology.organism_classification0104 chemical sciencesPlant BarkBotrytis010606 plant biology & botanyPhytochemistry
researchProduct

How to Deal with Uninvited Guests in Wine: Copper and Copper-containing Oxidases

2020

Copper is one of the most frequently occurring heavy metals in must and wine. It is introduced by pesticides, brass fittings, and as copper sulphate for treatment of reductive off-flavors. At higher concentrations, copper has harmful effects on the wine. It contributes to the oxidation of wine ingredients, browning reactions, cloudiness, inhibition of microorganisms, and wine fermentation. Last but not least, there is also a danger to the consumer. At present, some physicochemical methods exist to reduce the copper content in must and wine, but they all have their shortcomings. A possible solution is the biosorption of metals by yeasts or lactobacilli. Copper can also reach must and wine in…

0106 biological sciencesTyrosinasechemistry.chemical_elementcopper <i>casse</i>wine browningPlant Science01 natural sciencesBiochemistry Genetics and Molecular Biology (miscellaneous)0404 agricultural biotechnologytannins010608 biotechnologyBrowningFood scienceBotrytis cinereaWineLaccaseFermentation in winemakinglcsh:TP500-660biologyChemistrybentoniteBiosorption04 agricultural and veterinary sciencesbiology.organism_classificationlcsh:Fermentation industries. Beverages. Alcohol040401 food scienceCopperphenoloxidasesFood SciencebiosorptionFermentation
researchProduct

Effects of resveratrol on the ultrastructure of Botrytis cinerea conidia and biological significance in plant/pathogen interactions

2012

International audience; Many roles have been ascribed to stilbenes, namely as antimicrobial, deterrent or repellent compounds in plants, protecting them from attacks by fungi, bacteria, nematodes or herbivores, acting both as constitutive and active defense (phytoalexin) compounds. More recently, stilbenes (especially resveratrol and its derivatives) were acclaimed for their wondrous effects and wide range of purported healing and preventive powers as cardioprotective, antitumor, neuroprotective and antioxidant agents. Although there is a huge number of works concerning the role of resveratrol in human health, reports on the antifungal activity of this compound are still scarce. This study …

0106 biological sciences[SDV]Life Sciences [q-bio]Resveratrol01 natural sciencesConidiumchemistry.chemical_compoundBotrytis cinereaDrug DiscoveryStilbenesDISEASE RESISTANCEVitisPathogenBotrytis cinereachemistry.chemical_classificationELECTRON-MICROSCOPY0303 health sciencesbiologyPhytoalexinfood and beveragesBiological activityGeneral MedicineSpores FungalVITIS-VINIFERA LEAVESAntimicrobialABC TRANSPORTER BCATRB3. Good healthHost-Pathogen Interactions[SDE]Environmental SciencesGrapevineBotrytisSTILBENE PHYTOALEXINSMETABOLISMMicrobiology03 medical and health sciencesPhytoalexinsBotany[SDV.BV]Life Sciences [q-bio]/Vegetal BiologyPLANTSPHYTOALEXIN PHASEOLLINMode of action030304 developmental biologyPlant DiseasesPharmacologyBiological activityfungibiology.organism_classificationchemistryResveratrolGRAPEVINE LEAVESCAUSAL AGENT010606 plant biology & botany
researchProduct

Role of secondary metabolites in the biocontrol activity of Pseudomonas corrugata and Pseudomonas mediterranea

2017

In this study, the Pseudomonas corrugata strain CFBP 5454 and the P. mediterranea strain CFBP 5447 were shown to produce diffusible compounds that inhibit the in vitro growth of plant pathogenic fungi and bacteria and antifungal volatile compounds. In addition, both bacterial strains were found to produce cyanide. Mutant derivatives in LuxR transcriptional regulators, i.e. P. corrugata GL2 (pcoR mutant) and GLRFIA (rfiA mutant), and P. mediterranea PSMER (pmeR mutant) and PSRFIA (rfiA mutant) impaired in cyclic lipopeptide (CLP) production, showed a diffusible compound-mediated reduced activity, depending on the biocontrol strain, challenge microorganism and culture medium. The volatile com…

0301 basic medicineCyclic lipopeptidPseudomonas mediterranea030106 microbiologyMutantHydrogen cyanideeHydrogen cyanidePlant ScienceAntimicrobial activityHorticulturePseudomonaMicrobiology03 medical and health scienceschemistry.chemical_compoundPseudomonasBotrytis cinereabiologyLuxR transcriptional regulatorPseudomonasStructural geneSettore AGR/12 - Patologia Vegetalebiology.organism_classificationAntimicrobial activity; Cyclic lipopeptid; eHydrogen cyanide; LuxR transcriptional regulator; PseudomonasCyclic lipopeptidePseudomonas corrugataBiochemistrychemistryHydrogen cyanideAgronomy and Crop ScienceBacteriaEuropean Journal of Plant Pathology
researchProduct

Native Vineyard Non-Saccharomyces Yeasts Used for Biological Control of Botrytis cinerea in Stored Table Grape

2021

Postharvest spoilage fungi, such as Botrytis cinerea, are considered the main cause of losses of fresh fruit quality and vegetables during storage, distribution, and consumption. The current control strategy is the use of SO2 generator pads whose application is now largely under observation. A high quantity of SO2 can be deleterious for fresh fruits and vegetables and it is not allowed in organic agriculture. For this reason, great attention has been recently focused on identifying Biological Control Agents (BCA) to implement biological approaches devoid of chemicals. In this direction, we carried out our study in isolating five different non-Saccharomyces yeast strains from local vineyards…

0301 basic medicineMicrobiology (medical)030106 microbiologyFood spoilageCold storagebiological controlyeastsMicrobiologySaccharomycesArticle040501 horticulture03 medical and health sciencesBotrytis cinereaLachancea thermotoleransVirologyFood sciencePectinaselcsh:QH301-705.5Botrytis cinereabiologyChemistry04 agricultural and veterinary sciencesbiology.organism_classificationMetschnikowia pulcherrimaYeastlcsh:Biology (General)Postharvest0405 other agricultural sciencestable grapeMetschnikowia pulcherrimaMicroorganisms
researchProduct

Identification of Novel Hexapeptides Bioactive against Phytopathogenic Fungi through Screening of a Synthetic Peptide Combinatorial Library

2002

The purpose of the present study was to improve the antifungal activity against selected phytopathogenic fungi of the previously identified hexapeptide PAF19. We describe some properties of a set of novel synthetic hexapeptides whose D-amino acid sequences were obtained through screening of a synthetic peptide combinatorial library in a positional scanning format. As a result of the screening, 12 putative bioactive peptides were identified, synthesized, and assayed. The peptides PAF26 (Ac-rkkwfw-NH(2)), PAF32 (Ac-rkwhfw-NH(2)), and PAF34 (Ac-rkwlfw-NH(2)) showed stronger activity than PAF19 against isolates of Penicillium digitatum, Penicillium italicum, and Botrytis cinerea. PAF26 and PAF3…

Antifungal AgentsMicrobial Sensitivity TestsApplied Microbiology and BiotechnologyMelittinPenicillium italicumMicrobiologyAntifungal peptidechemistry.chemical_compoundFusariumPeptide LibraryFusarium oxysporummedicineEnzymology and Protein EngineeringPeptide libraryPhytopathogenic fungiPlant DiseasesBotrytis cinereaPenicillium digitatumEcologybiologyPenicilliumfood and beveragesBiological activitybiology.organism_classificationmedicine.drug_formulation_ingredientBiochemistrychemistryPenicillium expansumPeptidesOligopeptidesHexapeptide PAF19Food ScienceBiotechnology
researchProduct